' . | L
" DOCUHENT RESURE -

ED 168 'S561 IR 007 (96
AOUTHOR. - pageforde, Mary L. , T ‘ :
TITLE - BASIC Ipstructional Program: System Documentation. .

- INSTITOTION stanford Univ., calif. Inst. for Mathematical Studies

. o in Social Science.: ' ' : o N
EPONS AGENCY Navy Personnel Research and Development Center, San

o . piego, calif. - ' B o i
REPORT NO NPRDC~TN-78~12
PUB DATE May 78 .
CONTRACT = | N=00123-76=C-154 3 C e :
NOTE =~ ° - 39p.; For related documents, see IR 007 09 2~096

EDRS PRICE .MF01/PC02 Plus Postage. *
DESCRIPTORS ~ . *Computer Based latoratories; *Computer Science
- - Education; Wigher Education; Input Output;
‘*Instructional Programs; *Learning Modules:
Prograning; #*Programing languages; Tutorial
P - © Prograns L
IDENTIFIERS *MAINSAIL
B : o f.

ABSTRACT Lo , N ' : - o

- - This report documents the BASIC Instructional Program
(BIP),» a "hands-on laboratory" that teaches elémeéntary programming in
the BASIC language, as implemented in tHe MAINSAIL language, a

~machine-indevendent revision of SAIL which should facilitate

, inplementation of BIP on other computing systems. Eight instructional
modules which make,up the BIP system are described in detail,
including curriculum- data structures and the information saved in ,
student histories. These wodules are called (1) ONOFF, (2) BIP, (3) _
FARSE, -(4) XERS, (5) ERRDOK, (6) TEACHR, {7) VERFY, and (8). #4SRECS? &
list of techniques and skills withip the techniques is appénded.
(Author/cuV) o " s . -

/

e
T, "

‘v.:
4**%**1#**#&#*%ﬁ#*#*#K*####t**%**$$$$#$$#i$*§#$#$#&*##&&**ﬁ#ﬁﬁ@#ﬁiﬁ#*#*
* Re productions supplied by EDRS are the best that can be made *
* = ' . frcm the origimal document. | _ %
2K et o Mol o oo o K oAk ol sk ok otk o oo sl ok of oo ko e ok ool ok ol o 0k ook skl ksl ok sl e o X 3 e ok ke o Ao e
] N : *L : . cL . .

f

= .
? . . -
Us GEFPARTMENTOFHEALTH, .
o= EDUCATION L WELFARE .
HATIONAL INSTITUTE OF *° F

. , S . JOUCATION
THIS DOCUMENT. HA% BEEN HEPHO.
) . DUCED EXACTLY a5 RECEIVED FROM
. < et . . THE PEASON Ol QHGAMNIZATION DRIGIN. -« . =
Technlcal Note 78-12 ATING | T POINIS OF VIEWOHR OPINIONS May 1978
. . C STATED DO NOT NELESSARILY REPRE- i)

SENTOEFICIALNATIOMAL-INSTITUTE OF
EQUCATION ROSITION OB POLICY

oy

4

5

ED168561

- " BASIC INSTRUCTIONAL PROGRAM: = SYSTEM DOCUMENTATTON

s - . -

Ve

. / ’ '__ Hary L. Dageﬂﬁrdéi
B & A B
: J; Lﬂ@tiﬁut& far Maﬁhematical Stqdies in thg Sacial Sciences

: : g - Stanford University

N

i 1
, Stanford, California 94305
;‘) » * .I:
fa .
- V r
I A) - Reviewved by. .
- : John D, Fgrd, Jr,
¥ ' k]
B N

Navy Pefsgnnel RESesrch and Develspment CenJ;?
Saﬁ Diegn California 92152

’C;" z.‘ : o | K
ERIC ="} " -)

Aruitoxt provided by Eic:

-n,

FOREWORD , o

. This research and development was conducted in response, to Navy
Decigion Coordinating Paper, Education and Training Developmernit (NDCP-
. 20108~PN) under subproject Z(108-PN.32, Advanced Computer-Based Systems
for Instructional Dialogués,.and the sponsorship of the Director, Naval
Education and Training (0P-99). The overall objective'of the subproject
is to develop 'and evaluate advanced techniques.of individualized instruction.

This 4s ane in a series of sgix reports dealing with the BASIC
(Beginner's All-Purpose Symbolic Instruction.Code) Instructional Pro- ‘
gram (BIP), which is a "tutorial" programming laboratory designed for the \"
student who-has had no previous training in programming., - ' \

‘Previous reports in the program are concerned with conversidén of BIP : \
‘into the MAINSAIL programming. language (Note 1, 1978), the BIP supervisory-
level manual (Note 2, 1978), BIP 'student manuals (Notes 3 and 4, 1978), and : \
curricdulum information networks for computer-assisted instruction (Beard, \
Barr, Gould,“& Wescourt, 1978), This report is intended for use by individuals ,
vinvolved with the system-level support of the BIP system, " , \

- The work was performed undet¥CDﬂ§rac£ N0O0123-76-C~1543 to Stanford ..
Unlversity., The contract monitors were Dr. John D. Fletcher and -
Dr. James D, Hollan. . S ' .

a

. J. J. CLARKIN - . e
* Commanding Officer '

" SUMMARY | . -
The BASIC Instructional Program (BIP) is 4 "hands-on lahoratory" that
ches elementary programming in the BASIC language. . This report docu-
ments the BIP system as implemented in MAINSAIL, MAINSAIL ig a machine- .
independent. revision of SAIL which should facilitate implementation of

"> BIP "on other computing systems,

system is described . in detail.

Each of the modules which make up the
s . = . N

vii

| \
I - _ .
- CONTENTS
) Page
- SECTION 1. INTRoDUCTION . 1 e C. . 19
. 9 . L) ,
e SEGTIDN;és ONOFF MODULE + + v 0 v 4 v v v v e v o v v i e 3
o . . uE ; LR ‘
2.1 Checking that Student s Enrolled in Course 3
2.2, Setting up the Curriculum Data Structure. .-, , 3
. 2. 3 eadLng From and WEiting to the History File , .-. . 6
: _SECTIDN 3. BIP MGDULE c e .. e e e e e 9
3.1 Execlin Prcacduré D . . e e s e . 9
3.2 Dealing with Student Files R . e s e ey . . o9
” 30, 3 Ex ecuting Programs . . . R e e s . . . 10
3.4 The 'Help System and thEAMSGS File . e . “ e 10
3.5 Pt tacal Saving - . e s . e v e . . [
= 1
x [Vo
R . . 1
SECTIDN '{f‘!i PA-RSE MDDULE - L e L T T = = 3 = .i)\l.i lB
b1 Rezursivg_Cantrgl . . v e e et e e . . £ e e .13
: 4 ‘:2 I}TQES aﬂd TGREHS T T -Ij) ; = &] = .g = = ll&
Aij . PGl{ Eh 'Nﬂl;ati(:in - 7 , * 2 = s = &« = = & = = 16
4.4 TFormat of the Code Prodiced T 17
f&;ﬁ Arrays Affected by EPE Parser'. . . c e e e T 18
»gECTIoN 5. XERS MODULE . . . B oe i e e els o ah s b e e e e e 19
SECTION 6. . ERRDOK MODULE: + . % C e .. 21
SECTION 7. TEACHR MODULE . . v . vv o v v win uu v o . . 23
. SECTION 8. VERFY MODULE © o « o o v v o v ou m i o o . . 27
SECTION 9. MSKECS MODULE - o h e e e e e e e . 29
REFERENCES- .. . I TSR I 31
REFERENCE NOTES . . 4w o + + . . . O 31
APPENDIX—LIST OF TECHNIQUES AND SKILLS IN TECHNIQUES A-0
[e

|
I
|
i b
. " LIST OF FIGURES " -
o . ({ [\1 . |
L. -Data structures for 1lists of skills in techniques
2. A simplified pgrtian‘éf:the curriculum network f, e v e e s e .
3. Selecting the next task v . v 0 ar e v v v W w e e e e e e e
- r
_J
\ | e
| a A
|
S
\ "-ff ,
1 fﬂi_ \
}
1
A ¥
\ N
!
1 \ 1
<. -) :
& J 6 &

viii -

. g . .SECTION 1. INTRODUCTION \

, o , . : v
The BASIC Instructisnal Program (BIP) 1s an interactive problem-solving
laboratory that teaches elementary programming in the BASIC language. It

waafdgvelapéd on the IMSSS PDP-10 research computer facility. in a-specialized
high-level language called SATL (Redser, 1976), which is presently avail-
"gable only on FDP-10 computers. During the; year starting in October 1976,
" BIP was rewritten (Dageforde, Note 1) in the programming language called
MAINSAIL (MAchine-INdependent. SAIL) (Wilcox, 1977a) being developed at
the Stanford University Medical Experimental (SUMEX) Computer Facility.
MAINSAIL, as reflected in its name, provides capabilities similar to those
in SAIL independently of the underlying computer’ system (Wilcox, 19771b).
It is désigned to be powerful and efficient, with a high degree of por-
tability on a, broad class of computers. Thus; BIP was rewritten in MAINSAIL
80 that implementation on other (notably smaller) systems would be possible.

BIP was written in eight separately~compiled models (ONOFF, BIP, PARSE,
XERS, ERRDOK, TEACHR, VERFY, and MSRECS) that .are brought-inte memory (by
- the MAINSAIL runtime system) during execution as needed. The following
~sections describe the workings of all those modules as well as -the cur-_
ricylum data structures and the Information saved in student histories,

:‘]‘ | jl" - ’-,;

iy

; SECTION 2., ONOFF MDDULE

he DNOFF module perférms Ehree majar Easks at student sign—ﬂn -or
Ff: N

Sets up the curriculum data structure,

'.3‘ Chegks that. Ehe student is enrolled 1n the cours
1 Reads from and writes to the stulent's history file.

I
2.1 GLLckiggthab Student is Enrclled in Caurse

The text f£ile. WHO antains éach BIP "student's number and name. When‘
ident. signs on by typing his number and first name, BIP searches, the
8% for.a 1iné with that information. TIf no ‘such . number 1s found,

or if the name typed ‘does not match. the name «in the appropriate line, BIP
tells th’ student that the number and/cr name are incorrect, and lags him
off, : .

k'
1

2.2 Seﬁ,iﬁg»ﬂp thé!Currigulum Data’%ttugtu%e

The! urfigulumﬁfar BIP 1is contatned in a text file called TASKS. Be-
) fore any: btudents. run BIP, the TODATA program is run to compress certain
;eesential information from TASKS ‘and ‘write it onto a data file called INIT.
-When' a- stydent’ signs on, the INIT data is used to initialize the zurriﬁulum 7
data strudture. Throughout .a student's- session, BIP reads from the TASKS o
- file to acfess the text of the current task, its hints and model, etec,
The poidters that were initialized from the INIT data glve BIP efficient -
accegs to the text in the TASKS file. "“There are two data structures that
‘need to be iﬁitialized! one for the techniques, and one for the tasks.

- gramming tedhnigues in the curriculum (see Barr, Beard, & Atkinson: (1976),
for a descripticen of the curriculum structure). Each elément polnts to
the, start of| a linked 'list of -the numbérs of the skills found in that
tech niqueg {See the appendix for a list of the techniques and the skills
withiy thnse techniques.) This infnxmatian about the sets of skills in

~ each chniq;e i3 used by the task-selection algorithm (see Section 7).

As ShDWﬁ in. Flgure 1, the first technique includes skills 1, 2, 5, and 8y
the second, skills 3, 4, 6, 7, 9, lO ll and 12 .etes _

The pointer array technique has an element for each of the 16 pro-.

‘ e
P -

tech,nique - -
- array. ! Linked lists of skills in each te;hnique
e i e e e e e
| [T | et T S
1| leer 01| tar b 2| Jer 5|7 1] 8] NULLPOINTER}
IR — | I—— R | S I b o e e e [
‘ 1
I S S | T DA o
2 e T T I e B B R et VA NULLPOINTER ! .
N \;__ﬁ.is_,l Ll I —— , . e |
37 .. : ~
) 4 . s)
. L '; \?\ . . . o)
STt | 1 _ : ' ey
16 | | == }729] NULLPOINTER | _ ' ' , g\
) I | L ‘
Figure 1. ‘Data structures for lists of skills ix] techniques.

wf

=

- TRe data structure for hhe tasks 1s a linked llst af fﬁﬁafdﬁ, one
for each tssk ‘Each record has 13 Eields o :

1. "1ink " a painte: 10 the next maln task .in Lhe linked 1ist,

2, - nam;," the name of the task

3. "taskindex," tha'task numbef.
. 4. "taskPa* " the gtart position (in Ehe TABKS file) of the task
description. : - '

5. 'modelPos," the start position.(in the TAsks f1le) of the model
solutian. e ' : :

v 6. "firstHintPDs," the atare pcsitian (in the TASKS file) of the firsL
“hint, Lf there are: mot any hints, it Is set to zero,

7. nextHintPas," 1nitidlly, the start positian (iﬂ the TASKS file) g\
of the Eirst hint (1if any). If there are no hints, it is set to zero.
During a BIP session, after the student has seen a hint, nextHintPos ig
set to' the start pasitian of the next hint, if it existsu, and to zero
Dtherwise. oo

"moreTask," a pointer ta the start of a linked list of the "moreTasks,"
or extensicns, of this task (4f none exist, it is set.to NULLPOINTER). Each -
moreTask record iﬁiexactly 1ike a main task. Jecord, except that the "link'
field is not used, and the "moreTask" field points to the next record in the
11nked ‘list. of mgreTaSks of the current main task, :

. 9. quDpE " which has a bit turned on for each EASIC ﬂpefatDI re-
quired in the student 5 sgluti@n 20 this task (sea below).

10. "diSst " which has a bit tuined on for each BASIC Qperatcr
tha; the student may not uge In Lhe solution to this task (see below).

ll. "reqFns," which has 2 bit turned on for each function (lNT RND,
and/or SQR) fequired in the student's solution to this task (see below).

12, "dians,‘ which has a bhit turned on for each Euncticn that the
student may not use in the 5o]uti®n to this task (see below) .

13, "skills," a pointer te &4 linked 1ist of the prugramming Bkillﬁ
used in the scluti@n to this gasgk.

Each. rqups" and "dis0ps" fleld consists Df 16 bits, one for each
BASIC aperatar that can be Jeguived or disabled in a student's program:

%

15 14 1% 12 11 1w 9 8 7 6 5 4 3 2 1 g

. e S e . i i . i iy R e e e e £ S i i e i

. mweuT IF DM . FOR GOSUB READ 'REOPEN ENSUB
LET GOTO REM ST0P - NEXT RETURN DATA BEGINSU

i

wt

“Thus, if;LrT GOTO, and $TOP were requiréd'in the solution to a pgrticular
" task, the rﬁqﬂps bita for that task would be 1010001000000000, where a
1 indicateé that the bit is Lurngd on and a 0 that it is turﬁed aff \‘

./ Each ”FEans ‘and "d4sFns" field uses 3 bits, one for each funct ion

xaj‘?'

:%_5 21th3§ cauld be requifed or diqahléd in- a student's program:

Thua, 1f - INT were disabled in the saluticn to a pafticular task, the dLEFns
bits for that cask would be: 100, :

" 2.3 Reaﬁin& anm _and Writing to_ the Higsﬁf?LF;le

Each iﬂﬂividual student 'has a personal history file, a data file used
" to SthE information about the student's current state (what task he is
currently wdxking on, how many tasks campleted go far, atc,), and past per-
formance on ‘tasks and skills. At sign-on, thig file's information is read
into variables and sfrays whose elements are modified during the BIP session.
At sign-off, and at’ numerous other points during the session, the updated
1nfcrmatign 1s written back out to the history file.

The hi%tgry files contain the fallﬂwing infarmatian

toa

1. The Hisznry Summa_y L

k]
Cinteger _ o .
varlables information
} Dbt fmmm e s ————
studencNum Htudént number - , , . o

lastbateSignorr date of last session
lagtTimeSignon time of last session

totVineOn - total time on (minutes)
totNumSessions - total numbeér of sessions
! nuwlyksDone | total number of tasks completed
LasﬁanUsed highest technique used in last task seleation

nuwTngToStayIn =~ 0 ~ if no technique to "stay" in
Co n - 1f task-selection algorithm should stay at
technique n, since student had trouble with
last task at that. level A

, chronlndex © ° Index into chron array (see below)
ma 1 Num nunmber’' of last maln task seen
taskNum nimber of last task seen (Eithar thE same as

mainNum or-the number of a moreTask of the last
main task seen) o
@ .

bits :
varlable : infgtmatinn -
tngWord 16 bits, one for each technique (bit 0 for

s , - tnq l, 1 for tnq 2, ..., 15 for tnq 16). A

bit is off 4if carrespandimg technique has never
bEen‘SEen, on if 1t has. :

5 11 ;

2, Ihe Tauk Histnry——Blla arrdy tak[ni Iwo bits—;lement% per . task.ij
- T (BITS s a MAINSAIL data type for repfesentina a shart sEquence Gi bits.)

e - BITS ~ conkents e ' , ghangéd in routime i
0o ’ﬁav&riSae,Eask again S " upVer, enufc, veerti@n -
1 ever passed-verifier .~ ' . ypVer (called by mgrgg) eii
2 .l pagsed on first try? - ° *upVer . i
3ever said he understood -task \ . pEEtTdskfﬂt
4
9

-8 - of failures in verifier ' moreo
s choge to leave after failure?, - verOption (called by verfy}
.l . disagreed with verifier? - % .verOption '
f; w11 ©B8W bhe nodel T - ", modelo . . . us - ;,{

T - - 12 - :8aw all the hints. . "~ .. hinte .

o 13-15 . numbaf of hlnt requ ts : hinto: . ’ .
2nd ‘ |
BITS N ‘ : .

DfEIVV !\TE”&& T AR SR
3=7 B 2 Y task was seen :53 SR

) ‘Salj,;j' .mimutgq on task E addTime ‘(teacho, moreo, enufd)™
o 3. ~Thev5kil1 Histgry=sBIT§ array skllnf Thre& bits?eleméﬂts pef
8kill, - . L T

BITS - . | Qante@tﬁ ,"mfk L 1¢ﬁaﬁgéd/invr§utine e

. \times been ‘ 7 ‘>,“':iifinIask ;»:;55: e o
bBimes Eask passed verifier_;' ' =upVer (called by moreo) ’

. :{j . times passed verifier din 'a row.. - upVer & downVer (,
X SESL S jﬁ o TR
T I e . - - : PR . -
l RS - : ad _ |

0-5 free ’ o ‘
6-10 " :skild "ok" In. post-task int " postTasklnt
11-15 - skildl "ok" in a row : postTasklInt

BITS ' :
0-7 . frae e -
“8-15 . minutes om skill . - addTime

gfinTask (called by moreo, enufc)i ¥\“_;

v
T

':elgmentzs per task, iﬁ the érdéﬂr fthe student completed the tasks.

4. The Chronological Orders of T&Lsks-EBITS arragy cthron. '_Twa bitg=

0

. &

lste
BITS content s o -changed 4n outine
L0 Ny on {f task was specifdcally ~ teacho
iy reque sted by student:
1 ' - ever passed verdfier . upVer
2 passed af -first try .. upVer
3 ' on {if !"understool" task ~ postlagk Zut
4=8 number of failuwes In ve{F ler moreo
9 chose tq leave after £ailure verQptipr
: 10 disagreed wifh ver{Lfier . verOptipr:
11 . saw the model . modelo
12 . saw 21l the Minzg) hinto
1315 numbier of himt Tequaests _ hinto -
2nd
BITS
0-7 task ldent ificatiorr manber)
8-1 . ninutes on task add Tixe

O

ERIC

Aruitoxt provided by Eic:

5. . The Dara and _Time fach Task was Stgftéd—‘flng>f array Ch;.unl_) Time.
Théx:a are two eleméntﬁ per task, the fdirst Eelliﬂg the date, and the second,
the_ time of the start of the vask, referemced by the corr esponding elements
of the chron array.-

6. The Student-asg igraed fil e Names—--sciiny arrgy stultle. The Ascll
chgfactex codesgt of the charack erg In the student— ~as g{g ned file james are

‘saved at the end of the student hisfory, with the d{ff ere nt names separ ated

by 32, the character code For a space. <

O

ERIC

Aruitoxt provided by Eic:

elther 1t 1s mis E?iﬂg a valid BASIC statend

3.2 [}agl}g@ wiﬁt:,h Student Files

%
. ¢

’ | SECTION 3. BEP 20D ULR

The BIP module contains the main B IP pr-ogr am prece dure, e:@clm, which /
scans each line typed by the student to decide vhather it Is a BIP command, /

a BASIC statement, a request fo} pelp, Or an er ror, Execlin then calls
an appropriate procedure to eltNer follow the c ommand, to parse the,state- -

ment, or to:print a help or error mesmsaze.

"The BIP E:Lle's-; other main prgceclures handl® student files, execute
programs, print help mESSagE% whean requast ed by the sStuder:t, and save pro-
tocols of the BIP session (when desired by tke supervisar) .

31 Execlin Procedure -

WﬁEfl a student signs on, the BIP program performs Some inltializa-
tion and preparation for the sesaion,: Thew 4t repearced ly calls the main
procedure execlir to handle esch {mput dipe, cadling appropriate procedures
fﬂepending on whether the line is a BaSIC statement, @ BIp command, ah
error, or a request for help. .

1€ the first character of the l{pe 1g a " gf' thg?;hfé_lg procedure
(described below) is called. ’ ’

.If the firstc character is & pumb er, eXxeclirl edpesct= the line to be a
BASIC statement., It scans over the 1 {ne ntmber and,;xp& ct & the next se-

"
s . ¥

.quence of nonblank characters to pe a RASIC Cil[tefﬂ or (LET, INPUT, PRINT,.

etc.). If it is a BASIC operatoy, theen the prozedare syntax is calléd to
parse the statement. If 1t 15 not, e“{éc:lifl checks to see if the line is
a user-function definition or a LET staten@ac witheour expldeie use of the
word "LET," and if so, calls syntax. ochérwise, the lime FOs an error:

t, or 1% ¢ ont.alrls a BIP command

F

fallawing a liné number,

If the Iinput line does not start with a/mumberm, .exescl dn expects it to
be a BIP command. If it ie, the- appropr 4o pr@ceilurte to carry out that
command is called. Otherwise, the lime WS an error: either it is an
f1legal command or it has a BASIC gpermat ot which 14 mdss ing a line number.

°

I[f any of the above-mentioned pomsible e rrots scaur s, fxeclin calls
the procedure.magTxt to get the appropridte exrol messag e, prii nts t;hsﬂ!;
message, tells the student that the Input line was jots a(captéd and in-
dicatéa th“lt he may type "7 for help.

Students are allowed to save yp to 20 of thelr progTamd for later use,
At any point, they can save the QurYert Program tinder 4 mgme that they
agsigh. Later they can retrieve that program yith the ~GET - command, or
delece it with the =KILL- commdndl, Ac arly pofnta the -FIALES- ;cmm]and will
list the names of the files Cmrt_ntly storedl, ’)

The name srudents chink: LhQ Ly progean s gaved wwder and the name
ic is actually ECDL‘Dd under are tyo di fferent things., 1 {9 necessary to

9111

O

ERIC

Aruitoxt provided by Eic:

"

assijn the programs unique names: so chat they are not confuséd with other
prograns saved under the same names by other students. Also, in order

I
3
for a fllé nameg o be truely machine—independent, It should consist of

no more¢ than six characters. Therefore, the format of the name under
which the program is actually stored is

"

S-gtudent number>F<{ile numbe

where "file number- is & npumber between 0 and 9.

-
During a BIP session, the student flle names are in the string ariay
stuFile., TIf the student's number were, say, 88, theun stuFile[0] would be
studer s igned name for the file S88F0, stuFile[l] would be the name
r S88F1, Between sessions, the student file names are stored at the
end of the student history. L - .

program, the procedure saveu searches

m'

When a stydent asks to save
the stuFile array for the next null lE'ent assigns it the name the student
gave his program, creates a new file vhose name 1s in the format described
apove, and copiles the student program to that file.

Ta retrieve a flle, peto searches stulile for the appropriate student
file name (and tells the student if | £ exist), opens the ™
corresponding flle and coples the saved program into the student's working
space.

"
(]
w
m
ot

To delete a file, kil

hes stuFile for the appropriate student
file, t

SaTC
file name, deletes Ehé corresgponding file, and then sets mhat element of
stufile to null, so that it can be subsequently used when bhe student
wants £o save anothel program.

‘U‘

Tw list the saved student tile
stulflle array and types out the ﬂun1,ll
e

3.3 ExXecut 1 Pfggféﬁg

[tie procedure rune 1s called to ercoente a progeatin, Faoat 1o calls
doktor (the main pTDCEdufU in the FRRDOK module-—see Section 6) to check
T

the prggrim for styucturil errors. If none exfgt, {t commences interpre
tat lon of the program. For each statement, runo sends xcule, the main
XERS procedurc, the BASIC operator used in the statement, and then xcute

nuymber of statements that have been executed and warns the student when 1t
is excessive, slnce the program may be In an infinite loop. At that point,
the student ha% the option of elther stopping execution of continuing and
telling runo the maximum number.of further statements to execute.

cal ls the appropriate procedure to interpret it, Runo keeps track of the

3.4 The Help System and EhegﬂSG?jTiig -

JAt any point, the student may type a "?" for help. The procedure
help *I{s called to decide what type of help the student needs. If the

e 11

-
StEPS Llnluuéh tlig \

i1s typed immediately following a syntax, stkuctural, or execution error,

Help will give the student further information abéut the type of error

made and tell him to. type "?" for more help (as'long as it is available--

there are up to four diffaréﬂt help messages vailable for each error).
If the student typ&s "IREF,' helg refers him ta a section of tke Student

Manual. -

If the student types "?'" at any other time (i.e., not after making an
error), help will simply state that BI? s expecting either a BIP command
or a BASIC statement and that he can type "7BASIC' to see a list- of the

Statemencs and commands, _ N
x . ‘\
How daesr elp know which help message to give ab any point after an
error has been made? First of all, it knows which type of error was made,
r r 5y

since exactly one of the variables synerf, dokflg, or xerflg -(f
structural, or exedution error, -respectively) will be nonze:
tell thé error number. Help kEPPS track of how many '?"s have been typed
directly affer. an error So that it knows which message (in the sequence of
different help messages for the error) to print out.

LTS
o

The help messages are all in the file MSGS, along with the error

) messages, the manual. reference messages, and the skill descriptions. Each_

O

ERIC

Aruitoxt provided by Eic:

group of messages 18 on a separate page of MSGS, in order. The beginning
of each page has pﬂinEEfb te the start of all the mesgag&a on that page.
Given a page number and - a message number, the procedure msgTxt w111 _re-
trieve the appropriate massage from the fil& MSGS. Help knows the page
number for each type (syntactic, structural, or executlon) of error made,
and the error number from synerf, dokflg, or xerflg. So it simply computes
which message number should be presented (based on the number of times

the student has typed "7") and calls msgTxt with.that number and the appru=
priate page number to getr that- messdga. .

3.5 Protocol Saving

The Supervisor at EdLh B1F lelPL(:rlE:nthl b has Lthe CJhoelee ol whiethes
or not to tampilﬁ the code for pfntuﬁ@l saving. This 15 done by aetting
the macro "vanSaveProtocol" (in the filg MACROS) to TRUE or FALSE just
before Lgmpiling the BIP modules. If it {s TRUE, then the Supervisor
may save "'protocols ﬂ'or records of all that happgﬁc during student
sesslions, for some or all BIP students. Whether or not they will in M.
be saved for individual students is determined during the creation of
student histories, by an optlon in the newHst _ program,

The protocol-saving code ls scattered [hruughaut Che BLP modules,
The BIP file contains two procedures that are ‘often called by that code
to write vardous informatlon to the protocol file, One, writeTasks,gwriies
the name and number of the task the student is currently working on. The
other, writeProp, writes the current student program.

/

If the protocoul- savlng code was compiled and the Supervisor said he
wanted protocols saved for a speciflc student, “then a protocol of each
of that student's BIP sesslons will be saved on his personal protocol
file, whose name i3 of the format DAT<student numhar=, ‘

T

. L2

SECTION 4. PARSE HDDULF

The purpose of the procedures in the PARSE module ia“tg examine each
l of BASIC code that the student types and to produce 'a line of inter-
na;fcmda%ﬁhat can be read by the procedures in the XERS mgdu}eg
4.1 - RééuIEiyé Control :

. ' i

The parser uses a very common méthﬂd called top-down parsing with re-
cqrsive descent to scan the input line ard to produce an argument line for
XERS (the interpreter), The best way to explain this merhod 4s with an
example. Suppose the statement to, be parsed is a LET statement, which
has Ehe FGllQWiﬁg syntax: IR

\ <variable> # <expression-. -) Y,

| 1

um
\D"‘

In this sﬂ;éf the parser first looks for a legal BASIC variable. ILf it
finds one,i then it examines the input string, expecting an "=." If it does
not find it, an error has obviously occurred. Otherwise, the parser goes

ahead and lﬂDkS for an EKPEESSiDﬂ. .-

Thus, thé first action of the parser is to call the procedure
vafiablePdrs;i ‘In the same way that lets (the procedure,called by
syntax, the parser control procedure, to parQE a LET ECj‘éﬁEﬂt) "knows"
the legal gyntax of a LET statement, variabldParse "knows'"/vhat the
correct Syntax of aivariab%g is:

\ -]]
<variable= = istring variable? or +*numeric variable=

=string vagjlabl¢> = <string 1d- or ~string idr (earith.exp>)
<hulmeric Var&;blék = “numeric id- or =numerlec id= (;afith!ExPE)
or <numeric 1d> (<arith.exps, ~arith.,exp?)
Hence, it checks the first part of cthe line to see whether the varla tig
er then looks for a "(,’'

because the variable might be an array element. If no "(" is found, con-
trol returns to lets, because the parser assumes the variable has begn
found. If a "(" is Faund however, variableParse passes control to abxp,
the arithmecic expression parser, Upﬂn return from aExp (in the case of
a-string variable), varlableParse looks for the closing parenthesis. If
one is found, control is passed back to leta. If not, then a syntax error
has occurred-~elther a parenthesis mlsmatch or an 1llegal arit@netic ex-
pression.

is strigg‘mf numeric, In elther case, the parser

The process continues in this wdnner. ALx cp immediately passes con-
trol to alerm which passes control to aFactor, because of the syntax of

e iy
arithmetic expressions:
sarich.exp=r ﬁlﬁafith;ccrm? or <arilth.term> % <arith. term>

carich.cerm* = <arith.faccor» or <arith.factor> * <arith.faccor-

<arith .Factor~ = <arith,primary= or <arith,primary- * <arith.primary>.

O . 13 ’ 1 ;?' -

ERIC

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

(Finally) in aPrimar)

5 Cm £

—h,
the parser locks for an arjcthmetic primary such as
a numefic constént, a numeric varisble, or a user-defined function. If
it finds a legal primary, it returns control back to aFactor. Otherwise,

| . /
! n |
i ’w

a syntax error must have occurted. - . "

Eventually, control will be passed back up the line to lets (unless

"a syntax error .occurs), which will then look for the ''=" symbol, call the

expresasion parser, and return back to syneax. For example, the statement

o110

. Z 4+ 2) = INT (Y) would be parsed as £ wEs ¢ ‘
L : .
- A <LET statement>
<variable> = (<expression>" a
<oum var> (aExp) = alixp !
Z (aTerm + aTerm) = aTerm
2 (aFactor + aFactor) = afactor
Z (aPtimary + aPrimary) = aPrimary
yA (X + pi o= INT (aFxp)
zZ, { X + 2) # INT (aTerm)
Z£ X + z2) = INT (aFactor)
Z, (X+ 2) = INT (“aPrimary)
-z (X + 2)

\f\ ’ ' ' - M -y)
@ e e

Thig, iudicaces: exactly which procedures would be ééllcﬁ in the
parsing Df%%assgﬁﬁtement. 'Each procedure calls the one beneath it in
the hierarchy and returns control back to the prmc&dure which called it
if it finds what it expects. (Thus, the name "'recursive descent" for this
parse method, because the parser descends through levels of procedures
until it finds a match for the part of the statement it is lopking at.)

4.2 Types and Tokens ﬂg

However, the parser must know exdttly how much of the line is to be
examined at any given time. To do this, it uses a praLEdurP called j
which ‘takes the next syntactically meaningful part of the input string and
puts 4t in the variable token. At the same time, it "types" this token--
that is, it assigns to it a number that indicates what dts meaning is.
These types are defined as macros in the file MACROS (e g., inteqv is de=
fined as 17) so that they can be used in CASE statements. Tﬁé use of mne-
monic macra names instead of integers makes thé code more raadable. The
macro names for the types are listed on the following page,

getToke.,

O

ERIC

Aruitoxt provided by Eic:

nid+ numerlc varilable
sid * string variable ‘
streon © string constant
nume on numer{c constant i
opefp +=*/&() (
function a user—defined function -
egal &n = or
noteq . <)
lesg < .
leseq T <=
greq e
greater : > : f
nott boolean not
+ andd boolean and T,

orr = boolean ot
FooL , Bquare root
integqv . -~ truncated integer
radnun random number ’
lengt length of a string
bad {ilegal character
narray one-dimension nymeric array
dnarray two-dimensinnal nUmEfiL array

.. sarray 3tr1ng array

h {

;Lf -
For example. 1f the input line were Z (X + 2) = INT (Y), the procedure-

&kgetTDken would pgss the line to the other procedures of the parsar as follows:

nid Z, oper (, nid X, oper +, numcon 2 oper), eqal =,
- inteqv INT, oper (, nid Y, oper),

{Later, during the variabl e-parsing routine, the varilable 7 {is recognized
as an array variable, so its type wnuld be ;hanged to narray for the inter-

preter.,)

Hénce, each time getToken 1s called, it géts a new meaningful syntac-
ticah entiey" from the input string, types this "entity," dnd places the
walu;} into the variables token and type. GetToken first gets the next
nonblank character on the stfing Then, depending on what the character is,
etToken assigns it g "preliminary type" obtained directly from the array
t 'Vrable (Inifialized in the module Pcom, which 1s listed in the file
PARSE), which has an entry for every ASCII character (e.g., typetable[+]
oper, typetable[X] = nid, ¢t petable[!] = bad),

GetTDken then uses this preliminary type to decide what to do next.
For example, if the character is a letter, it scans the input line until
a nonalphanumeric character 1s enzsuntered and* Passes the resulting
string to another procedure ¢t typeld, which détefminas 1f the correct type
is a numeric variable, string variable, user function, etc. If a " is
encountered, then ’etTlen scans the liﬂL for another ", and assumes that
wha tever 11&5 betwveen the two is a atring constant. If the character is
a+,/, %, or ~, nothing is done.

a

The parser then uses the Information passed teo it by getToken to decide
‘what Lo do next. FDF'EKsmPIE in the procedure aPrimary, If the current:
Lype s intéqv, the parser assumes (perhaps erroneously) that a value for
the INT function Ls forthcoming. . Hence, it calls getToken to be " (" after
the calbk., Then it calls get Token apain, and then aExp, because it assumes
the argument for the INT call.wlill be an arithmetie erpresslon. Upon return
from akxp, it expects that teken will be ")"—if not. #4:syntax error has
occurred, o

The main problem with this type of parsing alg@fitﬁm occurs when it
is not immediately obvious what to do next even knowing what the current
token is. In BIP's parser, this situation occurs while trying to parse
general expressions (in PRINT statements) and Boolean expressions. For
example, suppose we are attempting to parse an expression in a PRINT
. statement, and the current token i1s X. Although this eliminates a string
~/ Expfessian from ﬁuﬂsidéfatiaﬂ, the parser does not know yet whether the
axPEEE&LDﬂ is arithmetic or Boolean; the statement could be PRINT X or -
PRINT X=Y. Nﬂ%mngy parsgrs Ltry to solve this problam with a meth@d called
backup, perhaps trying to parse an arithmetic expression firs If this falls,
the input string can be restored to its original state, and a Bnmlean parse
tried, ’

BiP's parser uses methods that try to determine the type of the expression
without parsing it. For example, to determine whether the expression is
Boolean, the lin&é is scanned, breaking on "=" or ">" pr "<'--which must be
present in a Boulean expression. - If one is found, the expression 1s. assumed
to be Boolean; otherwise, it must be arithmetic or string. In either case,
the line is restored to its state before the scan, and the parse proceeds
correctly. ~

The same type of problem can occur while parsing a Boolean expression,
where the parser expects to find a string or arithmetic expression followed
by a Boolean symbol and then another arithmetic or string expression. If
the token is a "(" or a user—defined function, the parser has no way of
telling at that point whether the expression is string or arithmetic. Again,
the input string is scanned for the type of expression it contalns. /
4.3 Polish Notation C gsj

&

In the proceas of parsing the line, the parser transaforms it/fi;m (ntix
{(normal parenthesizing) to pollsh notation, In which operators follow their
arguments, For example, the expresaion

INT (SQR (X * (2 + ¥)))

==

_— becomus .
X 2 Y+ * SQR INT

in the pollsh notation. Also standard delimiters are used to signal thd
beglnning of an array subscript and the end of an expresslon. For example,

¥

<()

Aruitoxt provided by Eic:

P

A (3, Y+ 2) becomes A (3, 2 Y +),

[(used to denote beginning of an array or substring]
[, used to separate st iprs or st in& EharaCtEISJ
[) used to denote the end of ar

atement, the monprinting
he Sep ration of wvari-
of data, a ";" is used.

For Ehé separation of expressions in a PRINT st
« character whose character code 1s 30 is usell, F
ables in an INPUT, DIM, or READ, and tl
As an example, ’ -

INPUT A, A$, BS (J) becomes A; AS; BS (J).

The way the parser transforms the line from infix to pollsh anoLat lon
18 rather straightforward. 1In the "INT (SQR (X * (2 + Y)))" example above,
while parsing the INT," instead of generating the code for the "INT" be-—
fore aExp 1s cdalled, the parser waits until after the return from aExp.
Hence, the code for everything else has already been produced and the "INT"
is tackéd on the end. The same thing 1s done whenever any operator 1is en-
countered, :

Iy
=4

Thus, “the code for "SQR" is tacked onto the end of X 2
case of a binary operator (one that has two arguments, such a
To

@

g 7
basically the same thing is done. The code for the X is pro uce& in aP:imarz
and then control passes back to alTerm. Instead of making the code for .the
* at this stage, alerm calls animarZ a second time, which then calls: éExE
to parse the parenthesized expression. AExp calls aPrimarz which adds the
code for the 2, but when control returns to aExp, 1t does not generate the
code for the +, but waits until after the second call to aPrimgrz (which
adds the code for the Y). Hence, at this point the code is "X 2 Y +.".
Finally, control pas b aPr 7, which finds the end of the par-
enthesized expression, and then to aTerm, which finally generates the code
for the *, (What actually happens is probably less confusing than this

deacription.)

4.4 Format of the Code P;Qdu;ég

The code has a special format (accumulated fn the stting varilable
kode and then stored in an element of the argz array) so that it can be
easily scanned by XERS. An elemdnt”of code has the fﬂfmdt

<type><tokenr<deliniters

and elements of code are strung together to form the complete cxpressio
Each complete line of internal code, corresponding to a BASIC expression
typed by the student, it stored in an element of the argz array, which
Interpreted a line at a time, by the procedures in the XERS module,
Nonprinting characters whose ASCII codes are 1 tlruu\h 23 are used
for the <cype> and the nonprintinj; charatter 29 (s used for the <deliminters

o

RIC - :

Aruitoxt provided by Eic:

in the above format specification. Using lower-case letters (a = 1, b = 2,

" etc.) to indicate the <type> and the] character to indicate <delimiter>
- the internal code produced by the parser for the example discussed abowe
is:

gZJaYleﬂg*jpSQquiNTJ

4.5 é:;ggs,Aﬁfg¢§eg by the Parser

£

Flnally, the parser updates five arrays (prgtxt, linNums, opers,
argz, and order) each time a BASIC statement is parsed. Prgtxt holds the

" 7 exdct text that was typed linNums, the tnput line numbers; opers, the
i BASIC operators; and argz, the cnde (as produced by the parser) for the
e LGS EVeEY tdme a new - {syntactlcally correct) line is typed by the student,

the next element of each of those four arrays 1s assigned (in- the procedure
putlLin) appropriate values from the information in that line. The integer
a;fay Gfder tellq'tha 1umerical (by 1ine number) order of Lhe 1inas The

Df the llﬁe with ;he 1nwea§ line numhet the vslue af the SECDnd element is
the index of the line with the next higher number, etc.

For example, if the student input the following lines as a solution
to the simple task "'SPOON""

order typed numerical order

10 READ X$ 10 READ X§

20 READ YS : 20 READ YS$

100 DATA "SILVER", "'SPOON" 30 PRINT X$ &-" ™ & YS§

30 PRINT X5 & " " & Y5 100 DATA "SILVER", "SPQON'
999 END 999 END

then the values of the prglaxc, linNums, opers, and oidelr afiay clefenis are:

index priTxt linNums oLy ordet
1 10 READ X$§ i , 10 READ 1
' 2 20 READ YS$ [20 READ 2
3 100 DATA "SILVER","SPOON" ' 100 DATA 4
4 30 PRINT X5 & " " & Y$ 30 PRINT 3
5 999 END o~ 999 END 5,
) '
20
Ao

ERIC | \

Aruitoxt provided by Eic:

SECTION 5. XERS MODULE

The workings of the interpreter are relazivgly gimpla when compared
with the parser. Because the argument code generated by the parser (and
stored in the array argz) is in polish notation, it is simple to use stacks
to evaluate expressions. Again an example i appropriate. Suppose we
wish to evaluate the polish expression i

X 2 Y+ * SQR INT.
The heart.of XERS, the procedure evalToken, is designed to perform certain
actions depending on what type the current tnken in the g;gg,scring is,
(To get another token off the args string,~ the procedure nextx is called.
It scans to ths ngngl delimiter, putting a new token and type in the
variables of the Same name.) In this example, evalToken would do the
following as each taken is scanned: -

X Push the value of X onto the real stack. L

2 Push 2 onto the real stack.

Y Push the value of Y onto the real stack,

+ Pop the top two values off the real stack, add them,
and push the result onto the real stack.

X

Pop the top twoe values off the real stack, muleiply
them and push the result.
SQE Pop the top value off the real stack, take its square
root, and push the result onto the srack.
- INT Pop the top value off the real tack, truncate it, and
push the result back onto the real stack.

Hence, .
I
INT (SQR (X * (2 + Y)))
has been evaldated,
Any expression Is evaluated fu (e sdile Way. A sllghte compli o ion
occurs 1f we wish to evaluate the value of an array variable. 1In this

J

case, we make use of a procedure called poUntil, which calls the token

evaluator (evalToken) until a specified delimiter character is reached.,
For example,” suppose we wish to evaluate the value of

AS (X + 2) & X$, in polish form: AS (X 2 +) X8 &

Upon ELttiﬂh AS, slnce the iﬁELEPfL[?r realizes it 1{s an arruy varlable,
it does not try to push 1its value onto the atack. Rather, it scans past
the "(" symbol, and then cails goUntil to call the token evaluatnr until a
") 1is reached. Hence, the following occurs:

Push the value of X onto the real stack.

Push 2 onto the real stack.

Pop the top values off, add them, push the resule.
Stop. &55

— e

o ‘ 19 aq
ERIC | | J .

Aruitoxt provided by Eic:

o

ERIC

Aruitoxt provided by Eic:

{ .
AL thits polat, the value of X + 2 [g sitting on top of the stack., Ho the

(X + 2) onto the string stack, and then does the following:

X5 Push the value of X§% onto the string stack.
& Pop the top two values off the string stack,
concatenate them, and push the result back onro
the string stack.)
Assignments are made in a slmilar manner. One important thing should
be noted--thé interpreter assumes that the value we wish to assipgn to the
variable is the top element 0f the stack just before the assignment is to
be made. ’

Supp@se; for example, rhat we want to make the following assignment:

A= B (J) + INT (Y) Which has the following pulish torm:

EY

B (J) Y INT + = A

¢

In this case, the Interpreter's first instruction ls goUut1l{"-"), which
causes the evalugtor to be galled yntil a "=" is reached. At this point,
the value of B (J) + INT (Y) will bé on top of the stack. Upon examining
the A, the evaluator will pop the astack, and store that value in the vari-
able A,

e v

O

ERIC

Aruitoxt provided by Eic:

SECTION 6. ERRDOK MODULE

When & student gives the RUN command -to BIP, the ERRDOK module checks
the student's program for a number of possible 5trugtutal errors.

ERRDOK employs ;F'fc—pass algorithm. 1f, at any point, an error
encountered, an appropriate error message is given and the program i
executed,

""h
|H

is
§ not

ERRDOK inltially makes sure that there exists a program to be run in
the ‘first Place, and that the last life is an END statement., If so, it
then checks the program line by line for further possible errors.

There are a few key "variables and record lists Empluyﬂd by ERRDOK
in its first pass through the lines of the Program.

1. inSub is a BOOLEAN that is TRUE whenever a BEGINSUB has noy yet
been f@llDWLd by an ENDSUB.

ments that have not vyet

[
\r'v'
‘TU‘

2. lauagevel tells the number of FOR
been followed by NEXTs. : .

3. forVar is a STRING array wiLh the names of the FOR lgcg\index
variables.

4. uskrsFns is therrecord class for a linked list of recor ds, one
for each function defined in the program. It has three fields: 'name,"

for the functjion's rame; "iﬁdex " telling the location of the function
dEflnitiQn in the prEFEM, and a link to the next record.

5. SUBclass is the record class for a linked list ot tecords, one
for each subroutine in the program. It has four fields: "subStart,"

.for the BEGIN line number; "subEnd," for the ENDSUB line number; a

BOOLEAN ”IQFEFEHLEd " set only Whtﬁ a GOsUB references the subroutine;
and a link to the next record.

"6 FORclass is the record class for a linked list of tectrds, voe
for-each POR loop in the program. It has three fields: "forStarc," for
the FOR lin# number; "forEnd," for the NEXT line number; and a link to the
next record.

tunction defini-

[

If the lin& being checked in the first pass gives
tian LRRDQK checks the already existing userFns rECGfdh (1f any). If
the "name" field of any of them is the same as the name of the functlon
being defined, then the function has been defined twice, and an error
message 1s given. Dtherwiae, a new userkFns record 1s created,

An END statement thgt is not the last llne of the program produces
an "TIllegally located 'END'" error message.

If the dine being checked 1s a FOR statement, the loopLevel number

1s incremenmed and the array element fq;Var[lagpnggL] Ls set to the FOR

loop's index wariable. A new FORclass fecﬂfﬂ% wlth the "forStart" fleld
set to the ¢urrent line, {8 cre Jt&d \

A1)

O

ERIC

Aruitoxt provided by Eic:

since all subroutines must be referenced by at lecast one GOSUB.

When a NEXT statement is encountered, loopLevel is checked. If {it

Is zero, then tho program has a "'NEXT' without a preceding 'FOR' error.
Otherwlse, forVar|leopLevell {s checked. If it {s not the same as the

varlable In the NEXT statement, an "Illepally nested FOR, .. NEXT Loop" .
error has been detected, Otherwise, the "[orFnd' [{eld of the FORclass ,
record for the loop just ending. is set to the NEXT statement's lipe pum- .

ber and looplLevel is decremented.
If the line being checked is a BEGINSUB statement and the BOOLEAN

variable inSub is TRUE, then an "Illegally imbedded subroutine" error has

bean found--a subroutine has begun inside another subroutine. Otherwise,

inSub 1s set to TRUE, and the previous non-~REM statement is checked.
. If it is not a STOP, a GOTO, or an ENDSUB statement, then there 1is an

error: execution of the student's program could illegally fall through
into the subroutine, Otherwise a new SUBclass record, with the "subStart”
ffeld set to the cuvrrent line number and the "referenced" field initialized
to FALSE, Is crested. ' :

When an ENDSUB statement 1s encountered, {f inSub is not TRUE, then
the program has an ""ENDSUB' without a preceding 'BEGINSUB!" error. Other-
wise, the "subEnd" field of the SUBclass record for the subtoutine just
ending is set to the ENDSUB statement's line number, and inSub is set to .
FALSE, ‘

Other statements are ignored during the first pass.

If the first pass is complete and the varlable inSub 1is TRUE, then B
a "Missing "“ENDSUB' after "BEGINSUB'" error has occurred. And Lf looplevel
is not zero, then a '"""FOR' statement without matching "NEXT'" error has

occurred,

Otherwise, everything 1s all right so far, and all GOSUB, ébTG, and [F
statements are checked in the second pass.

GOSUB statements are checked to make sure that they branch only to
BECINSUBs, And 1f the GOSUB 1s located within the subroutine hranched
to, an érror has occurred, since fé;ufsive subroutines are not allowed.
(This error has occurred if the GOSUB's line number is between the
called subroutine's heginping and emding line numbers--1its SUBclass
record's "subStart" and "subEnd" values.) TIf all is well, the "referenced"
field of the subroutine called by the GOSUB s set to TRUE.

GOTO and IF statements are checked 'to make sure that the line to
which they branch exlists ‘and 1s an executable statement {any statement
other than a DATA or o DIM). Then an illegal branch Into the middle of
a FOR loop or into or out of a subroutine is checked for.

Bty , , o

Once the sacond pags is complete, the "rceferenced" field of each
SUBclass record is checked. If it is not TRUE, then an error has occurrad,

. ks
Filnally, If ne @tructural errors have heen deotected hy ERRDOK, the
program is allgwed teo run. :

ot
[

26

i : o SHCTION 7. TEACHR MODULEL

- lLAEHE B main procedures handle -task selection, the post-task interview,
Ca updatin& ‘aof the student history, and Etepping the students through their’
; first: seaainn.ux-) : . W -

‘r ‘to’ understand ‘how tﬂsk selection is done, it is necessary to

Inzé
understand ithe definition and use. of skills and technigues. .BIP's cur="

ST ﬂiculum'ga '8 are the mastery of certain pngramming te:hnifues, including
‘ ' ‘simple. output; using loops, conditional branches, and arrays; asaignment h
to variables, etc, - The techniques are linked in a linear’ order, each having
but oné. prarequisite" (thé previous technique), bdsed on dqpendencé’and in- .
gIlclfe‘asiﬂg program complexicy. :) o : A
The techniquag are 1nt&rpreted as sets of akills, which are vefy spe~
cific curriculum elements like "printing a literal string” or "uging a
. ¢counter variable in a 1oop." “The skills are not themselves hierarchically
-ordered, The appendix lists the te:hniques and skills within them. The
pragramming problems or '"tasks" are described in térms.of the skills they
use, and are selected. on the basis of this description, relative td the
- student's history of competence on each skill. Figure 2. shows a simplifiéd
- portion of the curriculum network, and démongtrates the relatignship amnng
the tasks, skills, and’ tethniques. . C . . .

The algarithm by which BIP gelécts a next task when the atudent re—
quests it 1s shown ip :Figure 3. The selection process, begins with the .
lowest (least complgx) technique. The procedure setlpSets puts all the
skills in that cechnique into a "set' (actually, a linked 1ist of skill
“records) .called MAY whigh will:became ‘the get. Df skills .that the next
task "may use, _: L A S

TS SetUESEEE then examines the Student g history on each of the skills
SSSOCiéEéa with the technique, to see if i1t needs further work. - Two key
counters in the histnry (see documentation for: ONOFF) are associated with
"each skill. One is based on the results of the solution checker and

.. monitors the student's cantinuing Success 1n using the skill, The other
18 based’ an the student' selfaevaluation, and monizﬂrs his own Eontinuing
‘confidence in the skill. The.current definition of a; "needs work" skill

. isyone on which either counter is zero. For.each successful use of a
skill, both counters are intfemgpted (in upVer). ‘If the astudent quits-

. a task requiring a particular skill, the first counter is decremented; 3
"1if ‘the student requests more work on a skill (during the post-task inter—
view, described below), the second counter is zeroed. Any such "not yet _

. mastered’ skills are put into the MUST. "set" (linked 1ist of skill records).
EventualIy the pragram will seek to, find a tagk that uses some of these
MUST" skilla; -

- SKILLS

T | ourpuT
|- SINGLE

. VALUES.

SIMPLE
- VARIABLES

SINGLE .
VARIABLE °
READ & INFUT

Print
. Btring’
literal

[

‘Print
-} string.
: variable

Print .
numeriec
variable

:Asaigﬁ
numeric
" variable ~
with LET

Assign
| stting
variable

with INPUT

Write a program that

prints the string
"HORSE" ’

Write a program that

-uges INPUT to get a.

string from the user.

‘and ‘assign it to the
| variable W§.

Print W$.

Write a program that
first assigns the value
6 to the variable N,
then prints the value
af N. :

1

'TASK HORSE

Figure 2.

TASK STRINGIN

TASK ASSIGN

]

A Eimplifiéd'partian;pf_the curriculum network.

F

Student requests .. .
. TASK |

Start at lowest technique

.‘v”Ada all skills from
current technique *
to MAY get. ‘

Put skills that

Move taAneit
higher
technique

NEEDWORK In.MUST set

~any

Ekilla'ini no

MUST .
?

) - :
‘Examine "tasks:- ,
with some MUST skills, no -
EEillE‘QuEEiﬂE,Qf MAY

f£ind those |

.echniqueg,

- yes

“higher ™

-

T no

“Found HOLE 1n

‘Present the task with
- the: greatest number of - ;
MUST skills .

)

| Figure 3,

currioulum.

message to file ¢

Send '

29

- .25

-

Selecting the next task.

13

: L, -
¢,
»

“Student has-
completed
curriculum

[

>prggented as the next task. Thus, in fhe sinplified schcmv hawn in,

quired element 1is missing, he is-asked to add 1t to the program and rerun

If no MUST qklllu are Fuund (lndLLntlng LhﬂL the. student had mastered
all the akl]ls at. that technlque level), the search process moves up by
one technlque, adding: all its skills to the MAY set, thens seeking MUST .

'skilla again. Once a MUST set 1is beneraf&d the search termlnates, and

all of the tasks are éxamiﬁed by the procedure select. Thuae consddered
as 4 pcqaﬁhlc next task for the student must require (a). at least one

of the MUST skills, and (b) no skills.outside of the MAY set.- Finally,
the tagk in- this group.that requirég the largest numbar of MUST gkills is

Figure 2, Qasuming ‘that the student had not yet met the gritérjon on the
skills shown, the first task to be presented would be HORSL, because its
gkill liles in the earliest technique, and would FDnEEitUtP Lhe first MUST
set. Task ASSIGN would be.presented - next, since 1itg skills come from the
next - higher ;Ethnique, STRINGIN would be presentéd 1a59’a[these’ﬁhfee;

— " An’ lanreat!np curtiLuJUm development LL;hnique ﬂaﬁ LVGJVEd naturally”
in this scheme. If.BIP has selected the MUST and MAY sets, but cannot
find a task that meects the above fgquirements, ‘then it has found a "hole"

in ‘the curriculum, After writing a message to the HOLES file (see Section
3.4 of Dageforde & Beard, Note 2) describing the nature of the missing task
(e.g., the MUST and. MAY skillg), ‘the procedure adjust examines the next
,higherftechniquer~ It generates new, expanded MUST and MAY sets, and then
the procedure select again searches for. an appropriate tasks If none 1is
found, a new séarch hegins based on larger MUST and MAY sets. The Unly
situation in which this process finally fails to selezt a task oceurs: when
‘the 5cude“L has LDVEfEd all of: the Eurriculum. : :

Thé fif t task a new. student gets is not selected in this manner,
it is automatically task GREENFLAG, whieh requires a two-line program - o

.solution. ' Because this 1s expected to be thz student's first programming
'experience, and perhaps his first- interaction of any kind with a computer,
.he is led through the solution to the task in very small 'steps. GREENFLAG

is the only task in the curficulum that preqents text ¥from the file GREENF),
ks qugstign ﬁnd PKPEPK chefstudeﬁc to typé anawafq,' 311 Qf which

Howevcr, Lincc thE student 5 feapanaEE are ftaquently Eommanda that are

passed to.BIP! -8 interpreter, he can see the effects of the input, and emerge .

from GREENFLAG having written and executed a- genuine progranm. : -
'When a student has finishediGREENFLAG or anya@ther‘task by success-

fully running his program, he proceeds by requesting "MORE." The procedure

moreo first looks through the student's program for”the BASIC operators

and functions (if any) required in the solution to the task. If any re=-

it before again requesting "MORE." If the program contains all the required
operators and functions, the procedure verify is called to evaluate it by
comparing 1ts output with that of the model solution run on the same test
data (sec Section 8), and the results are stored (in the studgnt histary}
with each skill required by .the task. Also, 1in the post-task interview,

the student is asked to indicate whether or not he needs more work on the

. skills required by the task, which are listed sepafately. Thus, as mentioned

above, BIP has two measures of the student's progress in each Skill, its
Gwﬂ comparison-test results, and the student's self-evaluation. ’

~ably in the student program as well),

SECTIDN 8. fVERFY MODULE .
- VERFY 15 the EDluLinnachecker module, Basically, 1t' evaluates the
student's program by Eompﬂring its output to that of the model aoluLLcna
First, the procedure verify «calls vinit to initialize yariables,. based on

thée coding 1Yhe that precedea the model-'solution in the TASKS file, (See

Section 5.2 of Dageforde & Beard, Note 2, for a detalled description of
the coding line,) If that ccding 1ine does not .atart with a semlcolon,
then the student's program,is not checked; it is asgumed correct. Dther—

.wlse, the rest of the line is gcanned for option code. characters and value

lists. If tHere is* an "e," the ariable wantExact 1s set td TRUE, .since the
"e" gignifies that the Btudent 8 program must produce the -ekact same number
of putput .lines ‘as that of the ‘model.- An "n" signifies that numeric ex- ‘. -
pressions are to be stored for compafison (otherwise . Lhey are iéﬂﬂfEd),.qﬂ

the variable wantNumCon 1s set to TRUE, "An "r'" stgnifies that there are:

‘random numbers used 1n the" programs, and the "random' numbers tg be plugged

in.during the solution checker's invisible (to the student) - execution of
the model and of the student program are stored in the variable savrnd.
‘An "g"- signifies ‘that string expressions are to be stored for comparison

’(Dtherwise they are’ Agnored), so the variable wantStrCon is set to TRUE.

A "y ﬂignifiEE that all leading’spaces should be discarded before output
is saved Eof comparison, so the variable vacuum 1§ set to TRUﬁ.‘

2

. Next if thgrﬁ are any INPUT statements in the model’ (and ‘thus presum=
‘havelInput is set to TRUE. 'The first

few lines of the model solution are scanned, since for each INPUT statement,

‘there must,be a4 REM at the beginning of. the model solution describing the-

uge of the iﬁput Variable. The format of each of those REM statements is

& i
fling # REM fvariable name> IS: {description? .

(For example: 10 REM X IS: THE USER'S FIRST ADDEND
xal .

A linked list of in*utVars recotds 1s created, “one for each -INPUT variable

‘expected. Each inEutVaps record has four fielda* “"name," for the vafiabl%

name;-"vals," for the value(s) to be assigned” to the variable during execu-
tion; "desﬁriptinn," for the descriptian nf the variable, and "link," for
the pointer to the next record. The "name" and description" fields are
‘assigned according to the information in the REM statements, and the "vals"
fleld is assigned by the apprapriate valuEflists given at the end of the
coding line. S

[N

After the initialization, the mndel sglucicn is executed (invisibly),
and every line of autput 1s stored (in the array Erimtl) ‘for comparison,

" with the Egllawing excepticns. Any expression containing a quoted string

or 4 numeric constant will not be stored, unless wantStrCon or wantNumCon, -

respectively, is TRUE. ' If vacuum is TRUE, all leading spaces are deleted
before a line is stored. The 1nteger variable outl tells the numbet of lines

" of model’ output stored.

" If there is an executilon Erfor dufing the execution of the model, then
the studenc$is told so, and his program 1s assumed correct. Dcherwise the
anlutign checker prepares to execute the student's program and campare its

R '5, BTV R

: THE USER'S SECOND ADDEND)™ ™~ -

;_j ;

. output to that of the model If there are any INPUT varLables (if havelnput'—f'
1s TRUE), then the procedurd: kidputs 1g called to find out what varilable
names . the student used. Kigputs'goes through .thie linked list of ilonputVars
records -and asks the studenft "What variable do you use for ...?", where the
"..." 18 replaced by the "description" field of the record. Lha varilable.
name typed In by the student is checked to make sufe that it is a valid
variable name, that it 1s ¢f the correct type (numeric or atring), and
that the student has{not already said he used that wvariable name. If 1t

- 1s invalid Eor any reason, [the student is told why-'and asked to retype theé

- variable name.” Whep a valid namé is typed, 1t 1s compared to the ''name"

~ field of, the record. If they are not the same, then the "name" field is

|

replaced by the student's variablesname.- Onée again, as beforé execution = B
of the model solution, the "vals" field is set to the values to be assigned ~.
by INPUls of ‘this varlable. 1 -) - » .

- After finding out. the’ student's lnput vafiablé names, %he ngments
=« - . of a_Boolean array called matchu 77777
are initlalized to FALSE. Then he student's progtam is EKEEUtEd (1nvisibly)
and given the same "random" numbers and. INPUT values (if any) as 'the model -

- solution. Each line of its output (with the same vacuum, wantStrCon, and
wantNumCun restrictions as for. the model golution) 1is stored in the array ‘
tintk and compared to the atored output from the model (Erintl) If the -
1ine matches the itli element of printl, then matchup[1] is set to: TRUE.
The variable outk tells the number of lines of student output stored. -If,
after the, student's program has completed.execution, any of the elements
in the modeLEDutpuE array . (printl) have not been matched (i.e., if matzhuE[i]
= FALSE for any 1, 1 = 1,2),,.,0utl), he is told that’ tha program "'does not
secem to solve the prahlem,"‘anﬂ the unmatched elements are listed., Or if
wantExact 1s TRUE and outk is graﬁter than-outl, the student is told that:
the program praduced too much output. In ELther case, the procedure verOption
'is called .to determine whether or not the student wangs to continue work on - - -
the task, and, if not, whether or not he di%agrées with the solution checker.
ST (Lf this is the case, thia fact and the student's program are recorded in
th; fila ARFUL). In adstion to listinp the putput not faund, verD tian

_ anﬁtant& (numgrig,gnd/ur atrlng), lf -any, Lhe HoLuLlon checker irnﬂred
£ [f, on the other hand, all the-model ocutputs have been matched (aud putk
= outl if wantExact 15 TRUE), the student is told that the program "Tooks

akf" and the post-task interview (see SEction 7) is presented.

F -

,-

ey

i ! . i e = . ’ - . L
. . . N B i
[. L s B : :
-,* H . ' S R ’ . T ') L7) . {
B

(§ SECTILON 9. 'MSRECS MODULE '

There are a number of linked lists .of records built up®and used through-
out a BIP sesdion. In particilar, there 1s a linked 1list of records For every
type of 'variable (nuneric, string, '‘one~dimensional numeric array, two-dimen-
sional numeric -array, one-dimensional string array) used, in tHe student's’

&

'+ current program. There’fs algo a linked list of records. for the user-defined

Iy

functions, and the solutfon checker utilizes a list' of the expected . INPUT ,

K

variables, o R

. ~ The first two flelds of all these records are the same: "name" for
the variable (or functlon) name, and "link" for a pointer to the next record
B in the linked list, In addition, ‘the numeric and string variable records
: have a "val" fiéld holding the current valué (numeric 6r string). of the
’ _variable; the one-dinensional array variable records (numeric and string)
‘have an "upperBound" field for the upper bound of the atray (the lower
bound of all BIP arrays is 1) and®an "array a" field for‘thggactual array.
The two-dimensional numeric afray records have the same filelds as thé one-
dimensional ones plus a "secondUpperBnd" field for the upper bound of the
second dimension -of the array. INPUT variable records have-a "vals" field
. for the values to be successively assigned to the INPUT variable by the
¢ solution checker. Finally, user-function records have an "index" field
for the index into the argz array (see Section 4) of the line in the pro-
gram containing the functionm definition. .
Further examples of the extensive use of_ linked lists of records

]

tation for ONQFF) is ‘a linked 1list of records, each with 13 fields. N

are:
1. Tae data structure fgrkfha‘main tasks (as described in Ehe-ﬁacuméne

2. The MUST and MAY "sets" afiskills uged iﬁ'tasksseléctiéh (see
‘Section 7) -are actually separate linked lists of records, each with two

fields: '"skIndex" for the skill number, and "link" for a pointer to
it ‘ e \

v

- the_next record-in-the list, - ' SR —

-

_ 3. ®he MAYBE "set" of possible next tasks to be presented by the task-
selection algorithm is.a linked list of records, each with three fields:

"task" for a pointer to the task (in the linked 1ist of main task records),
"numMustSkills" for the number of skills in the MUST set that the task., . - :

uses, and "link" for a pointer. to the next record.

"~ The MSRECS module contains procedures useful for handling records and°
" " linked lists of -records. The "is" procedures (isnal, 1ssa, etc.) check (at
. execution time) to see 1f a given variable is in the appropriate list (e.g<,
: the one for one-dimensional numeric array variables, or the one for stying
variables). The "create'" procedures (nvCreate, nalCreate, etc.) creafe.a '
record. of the desired class and initialize various flelds according to the

information passed to the procedures, - ; .

ﬁ"PQEInMa:be adds a task to"the MAYBE "set" described above; RemoveFromMaybe
eliminates inappropriate tasks (those with skills outside the MAY "set')
- from that 1list, ° . . . _ ?

* g

"

33

29

o
RL(greata creates a new fe;urd to be added to the 1linked liqL of
- operators or functions :Lqqued in the solution to the current task.
vILﬂLh record has two fields, "name' for the name of the operator or
functlon that Is requiréd and "1ink" for a link to the next record
in the list. ReqRemove removes a record from the leL, isRequired
checks to see 1f a particular uperntor is, ququed (L. E., in the linked
list) and listRequired simply stéps thraugh the 1list. and Lypea out Ehﬂ'
"name" fizld of each of the records (see Section 2).

SkCreate-creates a new skill record and initializes its two flelds:
"dkIndexW for the skill number, and "link'" for a pointer to the next
8kill recoyd in the list., AddtoList adds a new skill record to a linked
"list of sKills (note that they are iﬁ numeric-order, by skill number),
and empty tells whether or not a particular skills 1ist is empty., As

- .mentioned above, the MUST and MAY "sets" used in task=selectiam are both
¢+ linked lists, of skills. ' - . : s

Insert insergs a reccrd at the beginning of a 1inked list Inlist
checks to see whether or not a particular string is the same as the "mame
Eield of any of the récgrds in a épécifin 1iﬁked 1ist. All of the "is"

1"

*Eor numeriﬂ variableé; or the ane for atriﬁg variablei egg)_tg thﬁk
and what "namé" to search for.

34

REFERENCES

Barr, A,, Beatd N,! & Atkinscn, R. C. The computer as a tutorial
labafa;ary= The Stanford BIP project. Interngg;qgalrjgg;ggl of
Han—MschinE Studies, 1976, 8, 567~ 596 o

. Beard, ‘M., Barr, A V., Gould L., & WEEEOuft K. Curticulum information 4
networks for computer-assisted instruction, (NPRDG Tech, REP. 78-18).
San Diego: ' Navy Perabﬂnel Reséarch and Develbpmant Center, April 1978,

Reiser, J. SAIL user's manual (Artificial Intelligence Memo 289),
’ Stanford, CA: Stanford Artificial Intelligenéﬂ Laboratory] Stanford
Univerﬁity, 1976. : .

Wilcox, C., R: HAINSAIL 1aﬁguagg feference manual SUMEX Computer
+ vaﬁjEQEr Stanford University Medical Cénter 1977. (n)

‘?Wilcox,:éﬁ R. The MAINSAIL praje:t, Develgping EQDlE for sof tware
pﬁrtability Proceedings of the First .Annual § nposium on Computer

Application in Médical Care, IEEE Catalog No; 77CH127D Bcwrép}r76 83,
Washingtan, D. C., 1977. (b) :

REFEREHCE NOTES

1, Dagéforde M. L, The BASIC Inatructional Prqgram- Convergian jnto
MAINSAIL Language (NPRDC Tech. Note 78 11). San Diggo., Navy Personnel
Research and Development Center, April 1978. v :

2, Dagefnfde, M. L., & Beard, M, The BASIC Instfuctianal Program: Super-
visor's Manual (NPRDC Tech Note 78-10). San Diego: Navy Personmel
Research and Develnpment Center April 1978, - :

3. _Beard, M. H & Barr A. V. The BASIC Instructiqnal Program Student
Hanual (NPRDC Special Rep. 77-2). San Diego: Navy Personnel Research
and Develcpment Center, Gctabér 1976. D .

4 Dagefarde, M. L., Beard, M. H., & Barr, A, V. The BASIC 1nstructional
program student manual: MAINSAIL cohwversion (NPRDGC Special Rep. 78~ ~9),

* San Diegc. Navy Personnel Research ‘and Development Center, April 1978

N &

31

APPENDIX .
. LIST OF TECHNIQUES AND SKILLS IN TECHNIQUES

&

§ N : \

10
11
12

LIST OF TECHNIQUES A SKILLE IN ILCHNlQUE% I 'alu '
Technique ;7 Simple autput-=fitst prgbrama , - o »
; . o : *
1 - Print numeric literal = . . L j o L .
2. Pridt .string literal . o Loy
5 Print numeric expression [operatlon. on literals]
8 Print striﬁg expressian [goncaLanatign of literals]
7 . g B \\ i
Technique 2. Variablegssaagigggent. . s ' h
3 'Print value of numeric variable
4 Print value of string variable : - -
6 . Print numeric .expression [operation on variables] _ _
7" Print numeric exptessinn [operation on 1iterals and variables] .
9. Print. string expression [concatanation of variables]

Print string expression [concatanation of variable and literal]
Asslgn value to a numeric.variable [literal value]

“Agsign value to.a string variable [litergl value]

‘Technique 3. Mare cgmpligated assignmentﬂ

34
35
69

70

82
83

Asgign to a stringvvariable [value of an expreasicn]
Assign to a numeric variable [value of an expression].
Re-assipgnment of string variable (using its own value)
Re-assignment of numeric variable (using its own value)
Assign to numeric variable the value of another variable
Assign to string variable the value of another variable

Technique 4, Mage cpmplicategfcutput.

28
29
30
74

Mul;iple'print.[string_1iterai numeric varidble]

Multiple print [string literal, numeric varilable exp ssion]
Multiple print [string literal, string variable] -,
Multiple'pfint [string literal string variable .expression]

-Technique 5. Intersctive progfamse—INPUT from user--using DATA.

.13
14

Aésign numeric vafiable by =INPUT- -
Assign string variable by —INPUT-

22
23
24

‘25

26
27

15 - Assign numeric variable by ~READ~ and ~DATA- ‘ B ' g
16 Assign string variable by ~READ~ and EDATA— ’ .
35 The REM statement .
ViTgéhniqugiéi MptE cqmﬁ1i;§ted7igpgt. v ; }fﬁg
17 Multiple values in -DATA~ [all numeric] o v
18 ~Multiple values in ~DATA- [all string] .) : : J
19 Multiple values in ~DATA- [mixed numeric and string] :

Multiple assignment by =INPUT- [numeric varia les]
Multiple assignment by =INPUT- [string variables] -
Multiple assignment by ~INPUT~ [mixed numeric ami st ing]
Multiple assignment by -READ- [numeric] :
Multiple assignment by -READ- [string] '

‘Multiple assignment by =~READ= [mixed numeric and string]

#*

i

: Technique 11.

~Technique 7, Bfﬂnehiﬁgésﬁfﬁgram flow."

37

Technique H.AWBQQIQQn;QKPtEES;QﬁE‘

- 36 Unﬁnnditionﬂl branch (sGﬂTD) ; S

InLerupt Executian

38

39
40
41,

75

76
77

Print Boolean expression [relation of string literals]

Print Boolean expréssion (relation of numeric literals]

Print Boolean expression [relation of numeric llceral and variable]
Print Boolean expression [relation of string 1iteral and variable]
Boolean operator -AND- -

Boolean operator -OR- '

Beolean operator -NOT-

?gﬁhn;qué 9. IF gtatementa—ﬂconditibnal Etandards.

42
43
46

47

48 .

59

"

Conditional branch [compare numeric variable with numeric literal]

Conditional branch [compare numeric variable with expression]

Conditional branch [compare two numeric variables]

) Eﬁnditi@nal branch [compare string variable with string litefal]

Conditional branch [compare two string variables]
The vSTDPs statement .’) : _—

=

: Techmique 10. . Handamade,1aqpsféi:er§tiqh,

44 Canditional branch [compare counter with numeric 1iter31]
45° Conditional branch [compare counter with numeric. variable]

" 49 Initialize counter variable with a literal value

50 1Initialize counter variable with the value of a variable
53 Increment the value of a counter variable

. 54 “Decrement the value ef a counter variable

51
.52

71
8

79

80

. 81

'

A:cumulace su:gassive values into numeric vafiable
Accumulate_successive values into string variable - -
Calculating complex expressions [numeric literal and variable]
Initlalize numeric variable (not counter) to literal value
Initfalize numeric variable (not counter) to value of a variable
InitLalize string variable to literal value ’

Initialize string variable to the valué of anothar variable

Ieghniggg_}ig iUsiggmfdgmmX? value tQ $igﬁifz>2§§:Qf data.

20 Dummy value’in -DATA- séagement [numeric]

21 - Dummy value in —DATA- statement [string]

Téghnique 13. BASIC functiﬂnsls.

*

56 The -~ INT~ functiﬂn . :
57 The ~RND- function . ' _ .

58 The ~5QR- function

oo
c>

Teghniqungé; FDR..;NEKT 1nqpa.

61

62
63

64,

FDE' . NEXT lnnps with. literal as findl value cf index
FOR ., * NEXT loops with variable as final value of index
FOR .. NEXT loops with positdve step. size other Ehan L

FOR . -NEXT loops with negative step size

Tééhnique 16_,.Afraysi

31

32

33
60
65

. 66

67

68

L

Assign element Df string. array variable by ~INPUT-
Assign element of numeri¢ array variable by -INPUT-
Assign element of fdumeric array variable [value is also a vafiable]

The ~DIM- gtatement

String array using numéric variable ag iﬁdex
Print value of an elemert of a string array variable
Numeric array using numeric variable as index
Print value of, an elément of a numeric array variable

Technique 16, . Nesting - 1u§ps (pne lcap ‘inside angchar)

72
73

N v v -

Nesging loops . ‘
Subtautines (—GQSUBE and friends) o - .

29

